Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In 1974, Sue Herring described the relationship between two important performance variables in the feeding system, bite force and gape. These variables are inversely related, such that, without specific muscular adaptations, most animals cannot produce high bite forces at large gapes for a given sized muscle. Despite the importance of these variables for feeding biomechanics and functional ecology, the paucity of in vivo bite force data in primates has led to bite forces largely being estimated through ex vivo methods. Here, we quantify and compare in vivo bite forces and gapes with output from simulated musculoskeletal models in two craniofacially distinct strepsirrhines:Eulemur, which has a shorter jaw and slower chewing cycle durations relative to jaw length and body mass compared toVarecia. Bite forces were collected across a range of linear gapes from 16 adult lemurs (suborder Strepsirrhini) at the Duke Lemur Center in Durham, North Carolina representing three species:Eulemur flavifrons(n = 6; 3F, 3M),Varecia variegata(n = 5; 3F, 2M), andVarecia rubra(n = 5; 5F). Maximum linear and angular gapes were significantly higher forVareciacompared toEulemur(p = .01) but there were no significant differences in recorded maximum in vivo bite forces (p = .88). Simulated muscle models using architectural data for these taxa suggest this approach is an accurate method of estimating bite force‐gape tradeoffs in addition to variables such as fiber length, fiber operating range, and gapes associated with maximum force. Our in vivo and modeling data suggestVareciahas reduced bite force capacities in favor of absolutely wider gapes compared toEulemurin relation to their longer jaws. Importantly, our comparisons validate the simulated muscle approach for estimating bite force as a function of gape in extant and fossil primates.more » « less
- 
            ABSTRACT Bite force and gape are two important performance metrics of the feeding system, and these metrics are inversely related for a given muscle size because of fundamental constraints in sarcomere length–tension relationships. How these competing performance metrics change in developing primates is largely unknown. Here, we quantified in vivo bite forces and gapes across ontogeny and examined these data in relation to body mass and cranial measurements in captive tufted capuchins, Sapajus spp. Bite force and gape were also compared across geometric and mechanical properties of mechanically challenging foods to investigate relationships between bite force, gape and food accessibility (defined here as the ability to breach shelled nuts). Bite forces at a range of gapes and feeding behavioral data were collected from a cross-sectional ontogenetic series of 20 captive and semi-wild tufted capuchins at the Núcleo de Procriação de Macacos-Prego Research Center in Araçatuba, Brazil. These data were paired with body mass, photogrammetric measures of jaw length and facial width, and food geometric and material properties. Tufted capuchins with larger body masses had absolutely higher in vivo bite forces and gapes, and animals with wider faces had absolutely higher bite forces. Bite forces and gapes were significantly smaller in juveniles compared with subadults and adults. These are the first primate data to empirically demonstrate the gapes at which maximum active bite force is generated and to demonstrate relationships to food accessibility. These data advance our understanding of how primates meet the changing performance demands of the feeding system during development.more » « less
- 
            Abstract The ontogeny of feeding is characterized by shifting functional demands concurrent with changes in craniofacial anatomy; relationships between these factors will look different in primates with disparate feeding behaviors during development. This study examines the ontogeny of skull morphology and jaw leverage in tufted (Sapajus) and untufted (Cebus) capuchin monkeys. UnlikeCebus,Sapajushave a mechanically challenging diet and behavioral observations of juvenileSapajussuggest these foods are exploited early in development. Landmarks were placed on three‐dimensional surface models of an ontogenetic series ofSapajusandCebusskulls (n = 53) and used to generate shape data and jaw‐leverage estimates across the tooth row for three jaw‐closing muscles (temporalis, masseter, medial pterygoid) as well as a weighted combined estimate. Using geometric morphometric methods, we found that skull shape diverges early and shape is significantly different betweenSapajusandCebusthroughout ontogeny. Additionally, jaw leverage varies with age and position on the tooth row and is greater inSapajuscompared toCebuswhen calculated at the permanent dentition. We used two‐block partial least squares analyses to identify covariance between skull shape and each of our jaw muscle leverage estimates.Sapajus, but notCebus, has significant covariance between all leverage estimates at the anterior dentition. Our findings show thatSapajusandCebusexhibit distinct craniofacial morphologies early in ontogeny and strong covariance between leverage estimates and craniofacial shape inSapajus. These results are consistent with prior behavioral and comparative work suggesting these differences are a function of selection for exploiting mechanically challenging foods inSapajus, and further emphasize that these differences appear quite early in ontogeny. This research builds on prior work that has highlighted the importance of understanding ontogeny for interpreting adult morphology.more » « less
- 
            Abstract Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa 1–4 . Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations 3,5 . Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals. The ancestry of the individuals in our study area can be modelled as a geographically structured mixture of three highly divergent source populations, probably reflecting Pleistocene interactions around 80–20 thousand years ago, including deeply diverged eastern and southern African lineages, plus a previously unappreciated ubiquitous distribution of ancestry that occurs in highest proportion today in central African rainforest hunter-gatherers. Once established, this structure remained highly stable, with limited long-range gene flow. These results provide a new line of genetic evidence in support of hypotheses that have emerged from archaeological analyses but remain contested, suggesting increasing regionalization at the end of the Pleistocene epoch.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
